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Abslraet We develop a simple statistical mean-field treatment of a disordered Hubbard 
model. The presence of disorder, refleaiog a range of lccal environments, may lead to 
local moment formation on an inhomogeneous scale; the essential element of the theoiy 
is a selfconsistent d d p t i o n  of local charges and magnetic moments on sites of different 
site energies, c, arising fmm the Occutrence of site disorder. The resultant theory is shown 
to be, in effeq a coupled infiniteamponent analogue of the single-impurity Anderson 
model, a helpful physical parallel in interpreting results fmm the Iheoiy. In addition to 
local charge and moment distributions, we consider self-consistently determined local and 
total pseudoparticle spectra, cdependent site occupation probabilities, and a measure 
of the Fermi-level charge distribution over the sites Particular attention is given to the 
evolution of the interplay between disorder and interactions as the band filling fraction, 
y, is increased from y 0 through to the half-filled limit, y = 1, and to the diffeferential 
influence of the Hubbard U on the local moment stability for different filling fractions. 

1. Intmduction 

The interplay between disorder and electron interactions is a multifaceted problem of 
much current interest [I-181. In this regard a one-band disordered Hubbard model 
is a rich and challenging model for study by a wide variety of methods [IO-181. The 
model. Hamiltonian is 

H = Eein iO + ~ ' ~ j ~ f O ~ j ,  + ~ U ~ n i , n ; - , ,  (1.1) 
i ,O  i , j +  i , O  

where the i/j sums run over all N ,  -+ CO sites with centre-of-mass positions {R;}, 
U = f denotes the spin, and cf,/ci, are the usual creation/annihilation operators 
with ni, = c ~ , c i o  the a-spin number operator for site i. On-site interactions 
are embodied in the repulsive Hubbard U. For sitedisordered models, disorder 
occurs solely in the distribution of site energies, e ; ,  usually regarded as independent 
random variables drawn from a common probability distribution g(e) [12-151; models 
with pointdefect disorder leading to locally correlated random site energies are also 
important [lo]. For topologically disordered Hubbard models [11,16-181, in contrast, 
off-diagonal disorder in the distribution of one-electron hopping matrix elements 
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K,, V(IR; - Rj I) is dominant, arising from disorder in the site centre-of-mass 
positions. In general, site-diagonal and offdiagonal disorder may each be operative 
to a variable extent 

An unrestricted Hartree-Fock (UHF) treatment is probably the simplest non-trivial 
approximation to a disordered Hubbard model. Although interactions are treated at 
a mean-field level, such an approach introduces the possibility of magnetism from the 
outset, and is thus important in describing the instability of the system to local moment 
formation [ll, 191. Further, since disorder leads to a range of local environments, local 
moment formation will thereby occur on an inhomogeneous scale [ll]. Thus, while 
UHF is a mean-field approximation, it is so in a quantum sense for each disorder 
realization; and interesting statistical questions arise in describing, for example, the 
distribution of local charges and moments over the sites, with consequent effects for 
the single-particle spectra, localization of pseudoparticle states, etc. 

We describe here a simple statistical mean-field approach [ZO] to some aspects 
of a disordered Hubbard model at a UHF level. The work is partly motivated by an 
interest in disordered charge-transfer binary alloys consisting of two s-band metals, 
one electropositive (C) and one electronegative (A): namely C,A,-, E C,[CA]I-, 
with x = N,/(N, + N A ) ,  and y = (22 - l)/x = (N, - N , ) / N ,  the excess 
C-species fraction above the stoichiometric limit x = 4, y = 0. The liquid Cs-Au 
alloy [21] is a relevant example, discussed in [22] and references therein. Insofar as 
the A band acts largely as an electron sink, the oneband Hamiltonian (1.1) is a useful 
caricature of the C-species conduction band for I k, the sites representing ‘active’ 
C-species sites with N, = N,, Ne = Nc - N A  the number of ‘excess’ electrons 
available to the C band, and y = N J N ,  the band filling fraction. The diagonal 
disorder, mimicked by a continuous g(c) ,  reflects Coulombic site disorder in the 
effective Gspecies site energies due to Coulomb interactions with the disordered 
distribution of surrounding ions, RMS fluctuations in which typically occur on an eV 
scale [ZZ]. Tbpological disorder will also generate disorder in the {Kj),which enable 
electron hopping between active sites, but at the high number densities typical of, 
for example, Cs-Au this is likely to be of less significance. We thus view the site 
disorder, reflecting the distribution of local Coulombic environments for the active 
sites, as being of primary importance. 

The basic mean-field equations are set up in section 2, the key element of which 
is a self-consistent determination, at a CPA level, of sitedifferential local charges 
and magnetic moment?., together with relevant total and local disorder-averaged 
pseudoparticle spectra. Useful derivative quantities are also introduced, in particular 
the charge distribution for pseudoparticle states of energy E over the sites with site 
energies E. 

Some limits and connections of the theory should be mentioned. In the atomic 
limit Vj = 0, and for any U and band filling y, it reproduces exactly the distribution 
of local charges and moment magnitudes over the sites, and the spin-summed total 
and local spectra. In the g(c) = 6(~) limit of no sitedisorder, and at half-filling 
y = 1, it reduces essentially to Cyrot’s 1191 random field CPA treatment of the 
paramagnetic local moment phase of crystalline systems (see also Economou er al 
[U]). In section 3 we show further that the present theory may be viewed, in effect, 
as an infinite-component analogue of the single-impurity Anderson model [24], a 
parallel for which important numerical evidence has recently been found Ill] in the 
context of a topologically disordered Hubbard model, and exploitation of which is 
helpful in interpreting results from the theory. 
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Detailed results are given in section 4, with emphasis on the variation with 
filling fraction y, from the empty band limit y = 0 (which is, equivalently, the 
non-interacting limit) through to half-filling, y = 1. Three qualitatively distinct a, 
regimes are identified-quasiatomic, intermediate and non-magnetic domains-and 
their characteristics, which stem from the interplay between disorder and interaction 
effects, are described. In section 5 the role of varying U is examined, with particular 
attention paid to the differential influence of the interaction strength on local moment 
stability for different filling fractions. 

2. Theory 

For any disorder realization, the familiar 'Ising-spin' UHF Hamiltonian is 

The site a-spin Green functions are defined by 

with 17 + O+. In (2.1) the effective U-spin site energy E;,, is given by 

E,,, = E; f U%;-,, = E ;  + $ U [ n ;  - op; ] .  (22) 

The overbar denotes an expectation value over the UHF ground state, and the site local 
charge (ni) and magnetic moment ( p i )  are given respectively by n i l p i  = %:+ * h i - .  
?bo sources of 'pure' disorder are in general assumed to be present: offdiagonal 
disorder in the { q j ]  (arising from topological disorder in the {ELi}); and, of 
central importance, disorder in the bare site energies { e i } .  These are regarded 
as independent random variables with a common distribution g(E) ,  assumed to be 
continuous and symmetric, with upperflower edges at cU and' eL = -6". 

Disorder in the U-spin site energies {E;,) that enter H,, arises both from explicit 
disorder in the bare { e i }  and from charge and spin disorder in the distribution of 
{ n j , p i ] .  A full determination of { n i , p i }  is a detailed question of self-consistency, 
but any approximate theory for a disordered system must clearly allow, at some self- 
consistent level, for site-differential local chargeshomena. Charge fluctuations in 
this sense are particularly important for, since [pi/ < min(ni, 2 - m i ) ,  their existence 
cannot be divorced from the question of site-differential local moment stability, and 
may strongly enhance the role of interactions in leading to local moment formation. 
At low filling fractions y - 0, for example, we envisage the possibility of ni N_ 0 on 
most sites but ni U 1 on a few, corresponding to strong localization of the occupied 
pseudoparticle states in the vicinity of IOW-E~ sites, with enhancement of interactions 
due to charge localization leading to strong moments on the significantly occupied 
sites [u),22]. Such a possibility clearly cannot be described if charge fluctuations 
are entirely neglected, as this corresponds to setting ni = y N 0 for all sites. It is 
further clear that E, itself is central in determining the self-consistent ni and IpliI: for 
example, in the atomic limit { K i }  = 0, these are determined uniquely by the value 
of ei, with ni = 0,1 or 2 according to site occupancy, and Ipil = min(ni , 2  - ni). 
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The basic physical idea of the present theory is to use the bare E'S as a 'window' 
on local environments, and to allow for site-differential local charges, moments and 
local moment (or spin) fluctuations, determined self-consistently at a CPA level, and 
embodied in a conditional probability density P ( n i ; p i l e )  common to all sites with 
a given site energy q = e, which is chosen to reproduce correctly the atomic 
limit; details are given below. The existence, or otherwise, of +differential local 
moments is thus deemed to be of primary importance, spatial correlation between the 
n j / p i  on different sites being neglected and the { e i r }  thus regarded as independent 
random variables. While such an approach is simple it can, we believe, capture 
important broad features of the interplay between disorder and interaction effects; 
see also [25,2q for computational studies that support this view. 

21. Basic mean-field equations 

With (...) denoting a full disorder average, the averaged total density of single- 
particle excitations (Dos) D( E) = $ E, Do( E); and the total U-spin DOS Do( E) = 
-a-'ImG,(E) is obtained from G,(E) = (iV;'EjGii;r(E))(= (Gi;JE)) ) .  
With the above approximations G,(E) may be written formally as 

= J F(~i,)G.,(ei~; E)%, (23) 

where F(ei , )  is the distribution of U-spin site energies, and G,(ejo;E) is a 
disorder average of GiCr in which E ; ,  is constrained. This takes the form (see, 
for example, [27) 

(24) 
1 G,(ejo; E )  = (Et iq - e i r  - C , ( E ) ) -  

where the improper self-energy is thus defined. Within the framework of any single- 
site theory (such as CPA [28,29], EMA [30] or SSCAlMSA 1311) C , ( E )  E C(G,(E)),  
i.e. is independent of ej, and a specified function solely of G,(E); see, for 
example, [27J 

With F(ei,) specified, (23) and (24) enable a self-consistent determination of 
G,(E). The function F(ej,,) is of the form 

F(e; , )  = J d c J d n i J d ~ i g ( c ) P ( n i ; ~ j l e ) 6 ( ~ ; .  - [ e t  f U ( n j  - upi)]) (2.5) 

where P is the (normalized) conditional distribution for nj,pi as above. With (2.5). 
equation (23) yields 

m 
G,(E) = G,(e;E)g(e)dc 

J-CO 

where Go ( e ;  E) is given by 

G,(e;E) = /dni  /dpiP(ni ;piIc)G~(ei , ;E)  (2.9 

and is a disorder average of the diagonal Green function for sites with a given 
ci = e, in which only the bare site energy e is thus constrained: G,(e ;E)  = 
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(N;1X2.,=c Gii;"), with N ,  the number of sites with ci = c such that N , / N ,  = 
g(c)de; the corresponding local DOS, D"(E; E), will be discussed further below. 

For P(ni ;  pi le)  we use in practice the model form 

P ( n i ; ~ i l e )  = 6(ni - n(c) ) f l%i  - I ~ ( c ) l )  + S(pi + l ~ ( e ) 1 ) 1  (2-8) 

with n(e)  = ( N ; l E i : c i = e n i )  the mean charge per site of energy E and Ip(c)I the 
corresponding mean magnitude of the site local moment, which are determined self- 
consistently via (2.13). Charge fluctuations are thus introduced via an E-differential 
n(e) ,  while being neglected for sites with the same site energies (as is exact in 
the atomic limit). Likewise, for sites with ei = E ,  pi = r t l p ( ~ ) I  with equal 
probability, reflecting e-differential spin fluctuations corresponding to an assumed 
paramagnetic local moment state. There are two physical ways to view the local 
moment distribution, between which the present theory does not discriminate: either 
as a frozen spin-glass-like local moment state (as found in T = 0 numerical studies 
at the UHF level [U,%]); or, following W o t  1191, as providing a snapshot of a 
dynamically fluctuating paramagnetic local moment distribution above any relevant 
magnetic ordering temperature (as would be appropriate, for example, to liquid CS 
Au). Note that (2.8) implies the obvious updown spin symmetry F(eio)  = F ( E ~ - ~ ) ,  
and 

G , ( e ; E )  = G _ " ( c ; E )  C J E )  = C(G,(E))  = C-,(E).  G,(E) = G - , ( E )  
(2.9) 

From (2.S), (27) and (24), G,(E) may be written as 

Go(<; E )  = $[Gp)(E; E )  + @;")(e; E ) ]  (2. loa) 

with 

G&*")(e; E )  = [ E  + io - - X(GO(E))]- '  (2lOb) 

and 

e;*"' = E +  $ U [ n ( c )  T Ip(c)ll (211a) 

E +  UnL$)(e). (211b) 

Physically, G?"(E; E) is the averaged o-spin Green function for those sites of energy 
e (half the total of such) that are preferentially occupied by a'-spin electrons and 
thus have local moments @(e) = a'lp(e)I; and for which the effective a-spin site 
energy E?')(= CL;"')) is (211), with n?:) the mean number of -a-spin electrons 
on such sites. Clearly 

Gk""(e; E )  = GL-,')(e; E )  (212) 

and similarly for the corresponding DOS, D$'")(e;E). 
appropriate self-consistency equations for n ( e )  and 1p(c)1 are 

In terms of these, the 

(2.13) 



1846 

and are independent of U', being invariant under U' CI -a'. 
With X(E) s C(G,(E)) specified as a function of Go, the essential mean-field 

self-consistencyequations are (2.6) and (2.10) for G,(E), and (213) for n ( c ) / l p ( c ) l ;  
the two sets are clearly coupled via the dependence of &')(e; E) on c, E and 
C,(E). The solution of these equations, together with simple number conservation 

D E Logan and F Siringo 

EF Ep 
y =  1, n(e)g(c)dr = 2 1 _  D(E)dE (2 14) 

(stemming from y = N;' Ci n:), enables a complete determination of n(c), Ip(e)I, 
the relevant DOS and the Fermi energy EF = Ep(y). The model P ( n i ; p i l e ) ,  
equation (28), is the simplest choice enabling a correct description of the atomic 
l i t ,  for which a(€), Ip(c)[ ,  D ( E )  and D(c; E) = $Eu Do(€; E) are reproduced 
exactly by the theory. In addition, for the U = 0 non-interacting limit,c;, = E;; 

the distribution P is then irrelevant, F(c ia )  reduces to g(c), and the only inherent 
approximation is a single-site theory for the averaged Green functions. 

For the specific results of section 4 we employ a cut Lorentzian g ( e ) ,  and the 
simplest, so-called Hubbard, approximation [32] for E(G,), namely 

C ( G , )  = J,G, (215) 

with J2 = (xi [K,l2). It is straightfonvard to show that (215) satisfies the CPA 
condition [28,29] for the site disorder, with a reference semielliptic spectrum Do( E) 
(appropriate to the unperturbed limit g(c) = a(€), U = 0 of no site disorder or 
interactions), namely 

&(E)  = [45, - EZ]'/Z/2?rJ, E' < 4 4  (2.16a) 

with a full bandwidth 

B = 45:" (216b) 

determined via Jz ,  which is in turn easily related to the number density of active 
sites, p ,  and to structural parameters of the system, see e.g. [U]. 

2.2 &tivotive properties 
The following quantities follow directly from solution of the mean-field equations, 
and will be useful in interpreting the results of section 4. 

(i) For any disorder realization, the eigenstates IQ,,) of the UHF if, may 
be expanded in a site spin-orbital basis, IQa,) = Ci aio,Iqbi,). The quantum 
probability that a u-spin electron in a given state of energy E will be found on 
any of the sites with site energy E is p(c ;  Ea<) = la;,,~.'Thus 

is the mean probability that a U-spin electron in any of the a-spin pseudoparticle 
states of energy E will be found on sites with ci  = e; equivalently, this is the mean 
fraction of charge in a-spin states of energy E that will be found on such sites. 
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The corresponding disorder-averaged probability density, H,(E; E) = (h,(f; E)), is 
readily shown to reduce to 

H,(G E )  = g(E)D,(€; E)ID,(E) .  (217) 

By definition, l d c H , ( ~ ;  E) = 1, and from (29) H ,  = H-, ,  reflecting the assumed 
paramagnetic local moment distribution Although neither h < ( ~ ;  E) nor H0(f; E) 
give direct information on Anderson localization of pseudoparticle states, they give a 
revealing measure of the charge distribution over sites for states of any given energy; 
H e ( € ;  EF) for Fermi-level states will be considered in section 4. 

(ii) Relatedly, the disorder averaged fraction of net ground-state charge found 
on sites of energy E is I(E)de, with the corresponding density given by I ( € )  = 
d € M f ) / Y .  

i with f; = c, so 

(iii) With C(n)dn the disorder-averaged fraction of sites with ground-state charge 
between n and n + dn, C(n) = (N;’ xi 6 ( n i  - n)). From (28), n; = n ( f )  for all 

m 

C(n) = J _ ,  S ( n  - n(E))g(f)dc. (218) 

(iv) For any disorder realization, Pmi(m = 0,1,2) is the probability that site i 
is m-fold occupied by electrons in the ground state: PZi = ’L;+n,_(= $(nf - p;) in 
UHF), and PI; ,  Poi follow from charge and probability conservation, E, mP,; = ni 
and E, Pmi = 1 respectively. Corresponding disorder-averaged site occupation 
probabilities follow, P,(e) = ( N ; l x i : e , = c  Pmi), with 

= ![n2(.) - ! 4 € ) 1  (2.19a) 

and P I ( € ) ,  Po(€) obtained via 

CPm(e) = 1 CmPm(E) = n(E). (219b) 
m m 

3. Multicomponent impurity analogue 

We now highlight further the interpretation of some basic equations from the previous 
sections, and find and exploit a helpful physical parallel to the single-impurity 
Anderson model [a] (SIAM). 

From the spin symmetries of (29) and (2.12), the total DOS D ( E )  = 
$ E, D,( E) is given from (26) by 

m 

D ( E )  = 1, D(f; E)g(c)dc (3.la) 

(3.lb) 
m - - 1, i [ D p ’ ( e ;  E) + D??(E; E)]g(e)dc 
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with D ( E ; E )  = $Eu D U ( e ; E ) .  Separating C ( G u )  = C ( E )  formally as X ( E ) -  
iA(E), the D$'(c; E) in (3.lb) are given from (210b) by 

D E Logan and F Smngo 

A(  E ) d  D$'(e; E) = 
( E  - E$' - X( E))' t Az( E )  

with €22 = e t  $U[n(e) r 1p(e)I]. The total DOS at energy E is thus a composite 
of the local D ( e ; E )  = $[&'(e; E) t D?J(e;E)] for sites of different E. And 
the physical interpretation of DP'/D?? is clear: if sites of energy e possess 
local moments, Ip(e)[ > 0, then D P ) ( e ; E )  and D?J(e;E) do not coincide and 
correspond respectively to lower and upper Hubbard subbands in the local spectrum; 
in contrast, if Ip(e)I = 0, whence e?) = e t $Un(c )  = e?;, then D P )  = D?? and 
the local Hubbard bands 'collapse' together. 

A full numerical solution of the mean-field self-consistency equations will be given 
in section 4, but it is useful here to make one further approximation, neglecting the 
E-dependence of C ( E )  and writing C ( E )  N C(EF) = X - iA(EF). From (3.2) 
the local Hubbard bands D ~ ? ( E ;  E) for any E then reduce to pure Lorentzians in E, 
centred on E = &?(e) - X respectively and thus separated in energy by U l p ( c ) l ,  
each having a width A(EF). Using (2.15), for example, the width 

A( EF) = ~ 4 ,  D( EF) (3.3) 

thus depends on the total Fermi-level DOS. With E( E) N C(EF), the self-consistency 
equations for n ( e )  and Ip(c)l at any e, given generally by 

(3.4) 

are then uncoupled from those for e' # e; and viewed as a function of EF(y) and 
A( EF) they are identical to those of the SIAM at the UHF level [24] for a single 
impurity with site energy cimp = e (see equation (26) of [24]). Since we consider a 
continuous distribution of site energies, our mean-field theory for the disordered 
Hubbard model may, in effect, be viewed as an infinitecomponent analogue of 
the SIAM, an individual component being the set of sites with a given site energy 
e. Such a parallel seems reasonable in general: for example, MilovanoviC and co- 
workers [Ill recently examined the weak disorder instability of a disordered Fermi 
liquid to local moment formation, via a numerical study at a HF-type level of a 
topologicaUy disordered Hubbard model, and found thereby a generalization of the 
SIAM compensation theorem [24]. 

With C ( E )  N C(E, ) ,  and in a precise parallel to the SIAM [24], the value of e 
relative to EF(y) determines whether, for given A(EF)/U, sites with any given site 
energy possess local moments; and as A(&)/U = r J 2 D ( E F ) / U  increases, local 
moments will typically persist in a progressively smaller e-interval. Thus, at low filling 
fractions y where D ( E F )  and hence A(EF) is small, the local spectra D!",'(c; E) 
(3.2) have narrow Anderson-like resonances, and strong local moments on a small 
fraction of low-e sites are readily sustained. With increasing y, D ( E F )  and hence 
A (  EF) increase, and we thus anticipate the possibility of a threshold y = y, < 1 
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above which the system is nowhere unstable to local moment condensation: with site- 
disorder present, the effects of interactions, while insufficient to produce moments at 
half-filling y = 1, may nevertheless lead to strong local moment formation at low y; 
see sections 4 and 5. 

More importantly, the SIAM parallel provides insight into the charge density (over 
sites) of pseudoparticle states, at EF in particular. Consider a filling fraction y in a 
local moment regime, and let E ,  pertain to sites on which local moments ip(e,)l are 
a maximum. With C ( E )  N C ( E F )  the centres of the Lorentzian Hubbard subbands 
in D ( E , ; E )  are separated in E by U l p ( ~ , ) l ;  and EF must lie precisely midway 
between these centres, since from (3.4) for Ip(e)I the moment will decrease if 4 
occurs at a lower or higher value. From (3.4) for n(~), it follows that n(c,) = 1. 
(With the E dependence of C ( E )  restored the equality will not be strict, but we 
certainly expect n(~ , )  U 1 for those sites with maximum moments, see section 4.) 
Three points follow. 

(i) The larger the local moment Ip(c,)I is, the smaller the contribution made 
by sites with E Y E,,, to the local Fermi-level Dos, D(E;  EF) .  Thus, sites with strong 
local momenn typically give a relatively small contribution to the Fermi-level charge 
density H,,(e;EF) a D,(e; &) D ( e ; E F )  (see (217)), and hence participate only 
weakly in Fermi-level pseudoparticle states. There is thus in effect only relatively 
weak overlap between the charge-carrying Fermi-level states and suong local moment 
siles, redolent of the assumptions that underly phenomenological two-fluid models 
(see e.g. 19,331). 

(ii) That n(~,) = 1, as above, is independent of the magnitude of lp(~, ) l .  If 
local moments (anywhere) have just stabilized, so l p ( ~ , ) I  is small, then D(c,; EF) 
will be significant due to substantial overlap of the Hubbard subbands in D(E;  EF) .  
Thus, when local moments can first be supported, the sites on which they have 
just stabilized (and for which E?) 5 E + ;U 5 E?:) will contribute appreciably to 
the Fermi-level charge density H , ( E ;  EF) .  They will thus participate significantly in 
pseudoparticle states at EF, as found in practice by Milovanovit and co-workers 1111. 

D(E;  E )  is then a single Lorentzian in E, centred on E = E + i U n ( e )  - X .  Sites 
for which E +  ; U ~ ( E )  - X = EF will clearly contribute appreciably to D(E;  EF) ,  and 
from (3.4) have . ( E )  = 1. Thus, in the non-magnetic regime, H (  E ;  E F )  will again (as 
in (i) above) receive a significant contribution from sites for which n( E )  N 1, whose 
effective site energies are close to E + ;U. 

Examples of the above, and further parallels to the SIAM [24], will be seen in the 
following sections. 

(i) In the non-magnetic domain, l p ( ~ ) I  = W E ,  E?) = E + i U n ( ~ )  = E$; ( 

4. Results: three ydomains 

We now consider specific results obtained from the mean-field equations (2.6), (210) 
and (2.13). Equation (2.15) for Z(G,) is used, specified in terms of the full width 
B of the unperturbed (U = O , ~ ( E )  = 6 ( ~ ) )  DOS, Do( E) (equation (216)), which is 
illustrated in figure l(a). 

The basic features desired in g(E)  are also illustrated in figure I(Q), and may be 
motivated by the C,A,-, s Cy[CA],-y binary monovalent liquid alloy of section 1; 
see also [22]. For such, g(e) mimics Coulombic site disorder in the electropositive C- 
species site energies, arising from the random Madelung potentials [22] characteristic 
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l0l/ I 

a5 

0.0 

wB+ 
Figure 1. (e) The model site energy distribulion p(c) of halfwidth X; and the zero- 
order DOS Do(E) of full width B. The B-scaled energies used in pradice are shown 
i? parenthesis, (6) Selfconsistently determined Dos D ( E )  for lhe non-intmding limit 
U = 0 (with X = 0.25). Equivalently, lhis is D ( E )  in the y = 0 empty-band limit for 
any 0. 

of the liquid alloy. At stoichiometry, y = 0, where the C-species conduction band 
is empty, D,(E) then models the zero-order conduction band, with g(c) = 6(c) 
corresponding to suppression of Coulombic site disorder as appropriate to the 
crystalline stoichiometric alloy. The Coulombic site disorder is effectively introduced 
by melting the crystalline alloy, and may lead [22,34] to a marked reduction in and 
smearing out of the optical gap for transitions to the conduction (C-species) band 
from the filled valence (A-species) band. 

As illusvated in figure l(a), we thus include a tail in the model g(c) extending 
below the lower edge of the zero-order Do( E ) ,  with a width X reflecting fluctuations 
in the Coulombic site disorder. With the C-species composition increased above 
stoichiometry, y = 0, the ‘excess’ electrons available to populate the conduction band 
will experience the localizing effects of the Coulombic site disorder mimicked by g(r). 
In reality, X will vary with y [ZZ], but since we are not concerned here with particular 
system modelling we simply regard X as the essential parameter for g(e). 

Specifically, we choose for g(e) a cut Lorentzian of halfwidth A, non-zero for 
f L  = -eu < c < f U  (a Gaussian g(e) produces identical qualitative results). 
Provided eL < -f .B the choice of cutoff in g(e) is largely immaterial to us, and 
a fraction 
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of sites have site energies lying below the lower edge of D,( E), with y, controlled 
by X such that y, - 0 as X -+ 0. 

The mean-field equations are thus characterized by the parameters U, B, X and 
6,. In the atomic limit (B -+ 0), n(e) , I f l (c )I ,D(E) ,D(e;E)  and C ( n )  are 
reproduced exactly by the theory for all U and y. Here we focus on B > 0 and scale 
all energies by B. The essential model parameters are thus 

G = U / B  X = X / B  ( 4 4  
and P, = E,/B which for convenience we choose to be unity; corresponding B- 
scaled energies are shown in figure I(Q). 

We consider first, for k e d  0 and x, the evolution with filling fraction up to half- 
filling y = 1 (since D,(E) and g(e) are each symmetric, y U 2 - y particle-hole 
symmetry occurs). We choose x = 0.25, so that a small fraction yc Y 0.08 of sites 
have E < -; B, and a relatively weak coupling value of the scaled interaction strength, 
0 = $-as is roughly appropriate to C~,[C~AU]~-, close to stoichiometry [20]. 

4.1. Quashtomic regime, y 5 y, 
Figure l(b) shows the self-consistently determined total DOS, D( E), for the empty 
band limit y = 0; equivalently, this is just the non-interacting (U = 0) D(E) for 
the disordered tight-binding model (TFJM) to which the disordered Hubbard model 
reduces for U = 0. 

On physical grounds we would expect TBM states towards the lowerenergy edge 
of the U = 0 (or y = 0) D(E)--those below the lower edge at E = -;I? of the 
unperturbed D,( E)-to be Anderson localized due to the site disorder, and to be 
associated primarily with IOW-€ sites: such sites are typically well separated in space, 
and surrounded by sites with higher c such that Ae is large compared to the hopping 
matrix elements that connect them. 

This in turn will affect significantly the behaviour of the interacting system as 
the filling fraction is initially increased from y = 0. The mean separation between 
the electrons is re - ( ~ p , ) - ' 1 ~  with ps the site number density. If U is sufficiently 
large, and the localization lengths CA of low-energy TBM states of energy E, are 
smaller than re, a double exclusion principle will in effect operate at sufficiently smaU 
U, whereby the ground state of the interacting U > 0 system consists essentially of 
a narrow energy range of mainly non-overlapping and singly occupied TBM states. 
As discussed in (221 (see also [16]), the limiting case of strictly non-overlapping 
singly occupied localized states can be described via a canonical transformation of 
the disordered Hubbard Hamiltonian to a representation in terms of basic operators 
ci,/ex, pertaining to the U = 0 TFJM h i 4  followed by neglect of matrix elements 
(such as interstate spin-flip terms) involving on-site overlap of different TBM states. 
This leads to 

where UX = UL( E,) is the effective 'on-state' Hubbard U, and L( E,) is the inverse 
participation ratio for TBM states of energy E,. 
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The interplay between disorder and interactions is directly evident here, for the 
greater the extent to which TBM states are localized (Le. the larger L(E,)  is) 
the greater will be the enhancement of interactions, embodied in U, and acting to 
suppress double occupancy of pseudoparticle states. Equation (4.3) is formally similar 
to the true Vij = 0 atomic limit of the disordered Hubbard model, but with ei -+ E, 
and U + U,. In the y regime, where it is qualitatively adequate, we expect behaviour 
strongly reminiscent of the Vue atomic limit, arising in essence from the combined 
effects of disorder and interactions [l6,22]. 

The extent to which such behaviour shows up in the present theory is illustrated 
in figures 2 and 3 for y = 0.02 (and 0 = i,x = i). Figure 2(a) shows 
the self-consistently determined n(e)  and 1p(e)1 as a function of E, the centre 
of g(e) occurring at e = 0; these are contrasted with the atomic-limit results 
Ip(e)I = 1 = n(c)  for c < e!(y) and zero otherwise, where the atomic-limit Fermi 
level e;(y) is shown. Figure 2(b) shows the Fermi-level charge distribution H ( e ;  EF) 
(217), and the related I ( € )  = g(e )n(e ) /a ,  giving the disorder-averaged ground-state 
charge density. Figure 3 shows the resultant total DOS, D( E), which is contrasted 
with that for U = 0. 

From figure 2 charge is indeed concentrated primarily on the small fraction of 
IOW-E sites with e 5 e$(y), the slight tailing of n ( ~ )  and I ( € )  to higher e reflecting 
a small contribution by such sites to occupied pseudoparticle states (E < EF(y) in 
D( E)), as discussed below. 

In particular, figure 2(a) shows that significantly occupied sites with e 5 C ! ( V )  
have Ip(c)l Y n(e) and thus near maximum spin polarization. Since the mean site 
doubleoccupancy probability Pz(e) = 0 for sites with Ip(e)I = n(e)  (2.19a), such 
sites can thus be at most singly occupied by an electron of a definite spin: the mean 
number of -U-spin electrons on sites of energy e that are preferentially occupied 
by U-spin electrons, n?i(e) = i[n(e)  - Ip(e)I], vanishes when 1 p ( ~ ) 1 =  n(e) .  This 
is analogous to the true atomic limit where, for e < e!(y), 1p(e)1 = n(e) (= 1). 
It is also commensurate with the arguments underlying (4.3), although the mean- 
field theory naturally cannot fully describe an extreme limit where the ground state 
consists of sfricliy non-overlapping singly occupied localized states: the latter implies 
ni = Ipil > 0 for sites that participate in any of the occupied pseudoparticle states, 
and ni = 0 = IpiI for those that do not, with Pzi = 0 in each case and thus 
Pz(e) = 0 for all E. While the mean-field theory can thus describe well the situation 
for e < e$(y), it will fail to account for the fact that a small fraction of the sites 
with a given c > e: will typically participate weakly in occupied pseudoparticle states 
(n; < I), whereas the majority of such sites will have ni = 0. This is related to 
the fact that, for c > ct, Ip(e)l drops below n(e) and vanishes. Nonetheless, since 
.(e) 1 here, Pz(e) is very small so the mean-field result is not unduly awry. 

In contrast to the true atomic limit, note next that although the vanishing of Pz(e) 
when Ip(e)I = n(e) implies that a site of energy e can only be singly occupied by an 
electron, it does not imply that such a site is inexorably occupied. With Pz(c) = 0, 
the mean probabilities that sites of energy e are singly occupied, or empty, reduce 
respectively to PI(€) = n(e) and PO(€) = l - n ( c ) .  Only if n ( e )  = 1, as in the strict 
atomic limit, is PO(€) = 0, P,(E) = 1. From figure Z(a) it is clear that n(e) < 1 for 
all significantly occupied sites, which therefore have a non-zero probability of being 
empty. This simply embodies the fact that while occupied pseudoparticle states at low 
y are mainly non-overlapping and singly occupied, they are not atomically localized 
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= f .  Figure 3. The selfconsistent DOS, D(E) (full 
curve) against E for y = 0.02, with = 4, 
i = :. occupied pseudopanicle stares are shown 
shaded, The U = 0 noninteracling Dos is shown 
for compa&,n (bmken cum). 

on single sites. It is reflected further in the Fermi-level charge density H(6;  EF) of 
figure 2(b) which, while sharply peaked at E = $(y) indicating the dominance of 
such sites in Fermi-level states, has a small but non-vanishing width. Only in the 
atomic limit B -+ 0 does H(E; EF) reduce to 6(c  - &y)). 

The quasiatomic behaviour at low y is also evident in C(n) (2.18), with C(n)dn 
the mean fraction of sites with charge between n and n + dn. Fbr y = 0.02 in the 
true atomic limit, C(n) reduces to y6(n - 1) + (1 - y)S(n). Assuming, as found 
(figure 2(a)), that n ( ~ )  is single-valued and monotonically decreasing in E, whence 
the inverse function ~ ( n )  is unique, (2.18) simplifies to 

(4.4) 

so inspection of the gradient of n ( ~ )  gives an indication of C(n). In analogy with 
the true atomic limit, the C(n)  corresponding to figure 2(a) is found U, be strongly 
peaked around n 0, with a smaller peak around n E 0.9, and with virtually no 
weight in the intermediate range 0.1 5 n 5 0.9. 

Finally, the self-consistent total DOS, D( E) (figure 3), also shows quasiatomic 
behaviour at low y. In the limit of strictly non-overlapping singly occupied localized 
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states, and because of the effective double exclusion principle that is thereby operative, 
it is straightforward to show [22] from the Hamiltonian (4.3) that for E < &(e) 
the resultant D( E) is one half of that for the U = 0 non-interacting limit, and that 
the D( E) jumps discontinuously to the U = 0 DOS at E = Ep+. Such behaviour is 
qualitatively mirrored in figure 3 for the selfconsistent D( E) in comparison to the 
U = 0 limit (although, as mentioned above, the present theory cannot capture fully 
an extreme limit of strictly non-overlapping occupied states). 

The broad physical picture of the low-y quasiatomic regime is thus of localized 
highly correlated electrons, evidenced in strong local charge accumulation on low+ 
sites; strong spin localization; and a strong correlation between local charges and 
moments, with Ip(e)l N n ( ~ ) .  This behaviour persists qualitatively up to a filling 
fraction of around yc Y 0.08, the fraction of sites whose site energies lie below the 
lower band edge of the unperturbed D,( E) (figure I(a)). For y 2 yc however, a 
progressive deviation from the above picture occurs, as we now discuss. 

4.2. Intermedinre regime: yc 5 y < yo 

Here we consider filling fractions up to y = y,, where local moments are no longer 
stable; U, N 0.85 with the chosen ii = t,j. = f .  As y is progressively increased 
above y,, it is found in particular that the local charges and moments increasingly 
decorrelate, and sites in a narrowing a-interval have progressively diminishing local 
moments. 

We consider first y = 0.15, towards the lower end of the intermediate regime, 
although a smaller y would suffice. Egure 4(a) show the resultant n ( ~ )  and Ip(6)I. 
These are contrasted with results for the atomic limit B - 0. This consists of a small 
low-e range of solely doubly occupied sites with . (E)  = 2, Ip(e) I = 0 extending up to 
E = +(y) - U; a singly occupied a-interval with n(a) = 1 = Ip(e)l extending from 
E$ - U up to a$ (whose width U reflects stability of the atomic limit ground state 
against particle+hole excitations); and solely empty sites for E > a$( y). Figure 4(a) 
shows that significant erosion of atomic-limit behaviour has begun to occur. The 
moments are weakening and are appreciable in an e-range noticeably less than U in 
width More importantly, I ~ ( E ) I  < n(e) for all E, so even sites with appreciable local 
moments, which are mainly singly occupied by electrons and preferentially associated 
with one spin type, U,  have PZ(c) > 0 and thus a significant probability of being 
occupied also by -u-spin electrons: nl",'(e) = ; [n(e)  - Ip(c)l] > 0. In contrast 
to the quasiatomic y-regime, this reflects not inappreciable overlap of the occupied 
pseudoparticle states. 

Figure 4(6) shows the corresponding No(€; EF) for y = 0.15, the vertical scale 
of which is an order of magnitude below that for figure 2(b). Note first that sites with 
the strongest moments give only a minor contribution to the charge density in Fermi- 
level states, in agreement with the SIAM parallel of section 3; and also that n(c,) 
for sites on which moments are a maximum is indeed close to unity, n(a,) z 0.91. 

Secondly, and again similarly to the SIAM [24], sites with bare site energies 
reasonably close to the upper (lower) local moment boundary are found to have 
an effective u-spin site energy €9) lying within a relatively small width of EF: 
such sites thus naturally participate signiAcantly in the Fermi-level charge distribution 
H,(c; EF) 0: Do( a; EF). In particular, the lower peak in H,(c;  EF) arises from low- 
a sites close to the lower local moment boundary that have a significant probability 
of being occupied by electrons (and thus an appreciable charge) and which, when 

D E  Logan and F Skingo 
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Figum 5. As for figure 3 bul for y = 0.3. 

occupied, are preferentially occupied by  spin electrons: the mean number of -U- 

spin electrons on such sites, ~ Y ) ( E )  = i [ n ( e )  + 1p(e)1], is thus somewhat less than, 
but of order, unity. Hence the effective site energy for a g-spin electron incident upon 
such sites, = E + UnL;'-,"'(~) is close to E + U; so sites with bare E somewhat 
less than but of order U below EF thus participate significantly in Fermi-level states. 
In contrast, the upper peak in H,,(E; 4) arises from sites close to the upper loorl 
moment boundary that have only a modest probability of being occupied (and thus 
a modest charge) and which, if possessing moments, are preferentially occupied by 
U-spin electrons; thus the effective site energy for a u-spin electron incident upon 
such sites, c?) = c + Unl",,(e) with n?J(e) = ;In(€) - Ip(c)I],  is only slightly in 
excess of the bare E. Sites for which E is close to EF thus contribute significantly to 
the Fermi-level charge density. 

With increasing filling fraction, the deviation from atomic or quasiatomic 
behaviour becomes increasingly pronounced. The pseudoparticle spectrum D( E) 
is no longer simply related to that for U = 0, to which it is compared in figure 5 for 
y = 0.3. That progressively weakening local moments exist in an e-interval, which 
becomes steadily smaller than the atomic limit width U, is clear from figure 4(a) (for 
y = 0.15) and figure 6(a)  (y = 0.6), and is also reflected in decreasing separation 
between the peaks of H0(c ;EF)  as y increases. Moreover, the peaks broaden and 
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ultimately lose their identity: their widths are essentially proportional to D(EF) (see 
(3.3)) which increases progressively with filling fraction as Ep(y) moves further into 
the band. 

In contrast to the quasiatomic y-regime where the Fermi-level charge distribution 
is sharply distributed on a small fraction of IOW-e sites (figure 2(b)), If,(€; 4) in the 
intermediate y-domain is clearly distributed over a much larger fraction of available 
sites. In addition, as seen from figures 4(b) and 6(b), the dominant contribution to 
If,(€; EF) shifts to sites with increasingly higher E as y is increased, tending towards 
the maximum in the site energy distribution at E = 0 for both y = 0.3 and 0.6, for 
example, electrons in pseudoparticle states at EF are most probably found on sites 
within ?cX of e = 0 (with 1 the halfwidth of g(i)). 

This is qualitatively sigdcant for the transition from insulating to metallic 
behaviour, which will occur at the filling fraction y, where pseudoparticle states 
at EF become extended. Although we emphasize that localization characteristics are 
not directly addressed by the present theory, the tendency to delocalization of Fermi- 
level pseudoparticle states is clearly enhanced as the corresponding charge distribution 
becomes signilicantly distributed over sites with E Y 0 close to the maximum in g(E), 
such sites typically being surrounded by sites whose u-spin site energy difference is 
small compared to the transfer matrix elements that connect them. Further, the 
probability density of c- spin site energies, F(e i , )  (= F(q- . , ) ) ,  is given (25),(2.8) 

D E  Logan and F Siringo 
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m 

F(E;,) = $[&(e; ,  -@)(e)) + & ( e i ,  - ~$-~) (~ ) ) ]g (e )de  (4.5) 

with EL*,) = e + $ U [ ~ ( E )  lp(e)l]. Consideration of n(e)  and ] p ( c ) ]  for y = 0.3 
or y = 0.6 (figure 6(a)) shows the resultant F(ci,)  to be narrower, by an amount of 
order 0 (= i), than its corresponding U = 0 limit, g(e), due mainly to signscant 
electron double-occupancy of low-e sites. The disorder in the U-spin site energies is 
thus, in effect, less than that for the non-interacting limit, which should act per se to 
stabilize the metallic phase as found by Singh [13], Ma [15] and Logan and lksch [25] 
in studies of a half-filled sitedisordered Hubbard model. 

Aside from these qualitative remarks we clearly cannot specify the insulator-metal 
filling fraction, ym, except that y, > yc is naturally expected because the physical 
picture of the quasiatomic regime is of primarily non-overlapping singly occupied 
localized states, significant erosion of which will begin when the occupied states are 
still localized. We add, however, that numerical studies [26] at full UHF level indicate 
that states at Ep delocalize at a y, in the intermediate y-regime where local moments 
still persist. MilovanoviC: and co-workers [Ill also find simultaneous coexistence of 
delocalized states at EF, and local moments, in their work on a spatially disordered 
Hubbard model. 

4.3. Non-magnetic regime: y" < y 6 1 

For y = 0.6 (figure 6) the local moments on sites in a small e-range are already weak, 
although feeble moments persist up to y = yo Y 0.85 with ts = $, = 4. Above 
yo the system cannot support local moments, with implications discussed further in 
section 5. 

As an example, figure 7 shows .(e) and He(€; EF) for half-filling y = 1; the 
corresponding total DOS is shown in figure 8(a). Here we simply note that for the 

J_, 
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nonmagnetic regime, the SIAM parallel of section 3 predicts H ( E ;  EF) to receive a 
significant contribution from sites of energy E for which n ( ~ )  Y 1, whose effective 
site energies E + tun(€) are close to EF. This is clearly seen in figures 7 and 8: the 
broadly distributed H ( E ;  EF) of figure 7(b) for 0 = $ is symmetric in E about E = 0, 
for which (from figure 7(a)) n(0) = 1. From figure 8(a), the Fermi level EF indeed 
lies precisely at $U ( E F / B  = $). 

5. The role of U 

In section 4 we considered fixed 0 = 5 and = $. Here we first discuss the 
dependence of results on the scaled interaction strength 0 = U/ B, retaining = a 
for the scaled disorder measure. As ii progressively increases, moments naturally 
persist to higher filling fractions, and yo = 1 for 0 N 0.55, above which the non- 
magnetic y-regime is eliminated and moments exist at half-filling. 

Figures 7 and 8(6) are for ii = 1 at half-filling, y = 1. The DOS (figure 8(b)) 
has a pronounced pseudogap centred on E = EF, reflecting the occurrence of strong 
local moments (figure 7(a ) )  on sites in an €-range of width somewhat less than U. 
As 0 is further increased the pseudogap deepens, and for 0 2 2 a Hubbard gap 
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(centred on EF = $U)  occurs in D(E)-as expected from the atomic limit where a 
true Hubbard gap occurs in the single-particle spectrum D( E) only for U in excess 
of the full width 2cU of the site energy distribution g(e) (i.e. 0 > '2 here). 

Regarding the SIAM parallel (section 3), figures 7(a)  and (6 )  for 0 = 1 show that 
sites with strong moments give only a minor contribution to the Fermi-level charge 
distribution; in contrast, H , ( E ;  EF) is strongly dominated by sites with bare site 
energies close to the local moment boundaries, whose effective u-spin site energies 
are close to EF. In addition, sites with E ,  = 0 for which moments are maximum 
indeed have n(e,) = 1, with EF lying exactly midway between the corresponding 
a-spin site energies &?(E) ,  namely EF = ) E  = em + iUn(c,), see figure S(6). 

Using (4.4), comparison of the gradients of n ( c )  for the 0 = $ and 1 cases of 
figure 7(a )  also shows the strong suppression of charge fluctuations as 0 is increased, 
embodied in the probability density C(n) that any site picked at random will have a 
local charge n: in contrast to the broad C(n) distribution resulting for 0 = i, C(n) 
for 0 = 1 is very sharply distributed around n = 1 with a halfwidth An - 0.1, and 
charge fluctuations are thus of minor importance. 

The comments above refer to y = 1, but of greater significance here is the 
differential influence of 0 on local moment stability for different filling fractions. At 
half-filling, y = 1, we have seen that there are no moments for 0 = i, but that weak 
moments occur with I? increased to, say, 0.6. In contrast, for the quasiatomic regime 
y 5 yc = 0.08, strong atomic-like moments on the small fraction of significantly 
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occupied IOW+ sites are evident for 6' = (figure 2(a)) .  
To illustrate this we consider first the mean local moment magnitude per site, 

1 ~ 1  = (K' Ci IP;IL given by 

Figure 9 shows Ipl against y for 0 = 0.5,0.6 and 0.75. In the quasiatomic regime 
y 5 yc, increasing 6' above $ produces virtually no change in Ipl, which is essentially 
linear in y. In contrast, for y in excess of yc, and for y N 1 in particular, 
increasing 6' is Seen to have a pronounced effect on the existence and stability of local 
moments. The characteristics of the quasiatomic regime are, however, recovered as y 
is decreased below - ye, regardless of whether local moments exist around half-filling. 
This is to be expected, despite the common view that half-filling y = 1 is optimal for 
local moment formation: as y is decreased and EF thus moves progressively towards 
the lower edge of D( E), occupied pseudoparticle states are increasingly dominated 
by IOW-E sites, and their localization will eventually lead to a strong enhancement of 
interaction effects, resulting in the occurrence of the quasiatomic domain described 
in section 4.1. The essential independence of 1p1 on U in the latter regime is also 
natural, for provided 8 is sufficiently large to ensure an effective double exclusion 
principle leading to mainly singly occupied non-overlapping pseudoparticle states, a 
further increase in 6' will not appreciably change the occupancy of the states. As we 
have seen, however, what is in effect an infinite value of 0 at low filling may not be 
sufficient to secure even the existence of moments around half-filling. 
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Figurc 11. The mean-magnitude of-fhe local moment per elFlmn, l p l / y ,  against 
filling fraction y, for U = 0.6 and X = 0.05 proken curve), X = 0.25 (full curve). 
Corresponding alomic limit resulls a? also shown. The y axis arrows show yc = 0.016 
(for X = 0.05) and y, = 0.082 (for X = 0.25). 

To highlight the above, figure 10 shows the mean magnitude of the local moment 
per electron, (N;l  xi  IpJ = lpl/y, for 0 = 0.5 and 0.6, weak moments existing in 
the latter case at half-filling. The corresponding atomic limit results lpl/y = y,/y 
(with y, the fraction of singly occupied sites) are also shown: strong moments clearly 
occur for all y in the true atomic limit, the slow decrease in Ipl/y reflecting an 
increase in the fraction y., (=,i[y - y,]) of doubly occupied diamagnetic sites as y 
increases towards half-filling. Strong erosion of atomic-limit behaviour is evident in 
lpl/y for most of the y-range, but as the filling fraction is progressively decreased 
l p l / y  increases to a value somewhat less than one for y 5 yc in the quasiatomic 
regime. In fact, as in section 4.1, were the present theory able to dcscribe fully a 
limit of strictly non-overlapping pseudoparticle states, we would have ni = Ipil for 
all sites i, and thus Jpl /y  = 1 in this case even though the occupied sites are not 
atomically localized. 

We mention also the effect at low y of decreasing 0. In the strict atomic limit, 
sites are singly occupied only for a filling fraction up to y' such that the atomic limit 
Fermi level e:(y') = eL 4- U (with eL the lower edge of g(e)); and for y > y' 
double occupancy of low-€ sites occurs. This leads simply to 1p1 = y for y < y' and 
1p1 = y, for y > y' as seen in the atomic limit results of figure 10. The fraction of 
sites whose site energies lie below the lower edge at - $ B  of the unperturbed Do( E) 
(figure l ( a ) )  is y, = 0.08, and for U < [-$B - eL] (i.e. 0 < in the present 
calculations) double occupancy of low-e sites will begin at a filling fraction y' < ye. 
This is naturally reflected in the resultant n ( e ) / l p ( e ) l  from the mean-field theory: 
the quasiatomic regime of mainly singly occupied non-overlapping states then obtains 
for y 5 y', although significant erosion of atomic-like behaviour again does not occur 
until y 2 &. 



Statistical mean-field approach to a disordered Hubbard model 1861 

of the site energy 
distribution g(E). As j; is reduced, y, decreases (equation (4.1) and figure l(a)): 
with x = 0.05, for example, yc N 0.016. The quasiatomic y-regime thus becomes 
smaller in extent. Further, the diminution of site disorder with decreasing x, coupled 
with the fact that sites with e well within the unperturbed bandwidth will in effect be 
accessed at smaller filling fractions, would suggest a relative reduction in local moment 
stability as y is initially increased beyond the quasiatomic regime. ?b illustrate this, 
figure 11 shows the mean moment magnitude per electron, l p l / y ,  for fixed 8 = 0.6 
(where weak moments occur at half-filling) with = a and 0.05. As y increases 
above - y, it is indeed found that IpI/y drops more rapidly for = 0.05, indicating 
a relative reduction in local moment stability for smaller site disorder. We also note 
that, for the = 0.05 example, y N 1 is optimal for local moment formation in the 
sense that as the filling fraction is reduced below half-filling, lp l /y  (as well as 1p1 
itself) initially decreases; but as y is decreased further towards - y, the characteristic 
signature of the quasiatomic regime is again naturally recovered. 

Finally, we comment briefly on the role of the halfwidth 

6. Conclusion 

A statistical mean-field treatment of a disordered Hubbard model at a UHF level has 
been developed. The essential element of the theory is the use of the site energies, 
E, as a 'window' on local environments that lead to inhomogeneity in the distribution 
of local charges and magnetic moments; these, together with relevant total and local 
pseudoparticle spectra, were determined self-consistently at a CPA level. The resultant 
interplay between disorder and electron interactions was evident in particular in the 
evolution of the system with filling fraction (section 4) for a fixed (weak coupling) 
value of the scaled interaction strength 0 and a given scaled disorder A; and also 
in the differential effect of 0 on local moment stability for different filling fractions 
(section 5). Further, despite the undoubted simplicity of the present mean-field 
theory, the perspective it suggests is supported by detailed computational studies of 
a site-disordered Hubbard model at UHF level, for both half-filling y = 1 [25,26] 
and as a function of y [26]: localization characteristics, and electronic properties of 
the system such as those we have considered, are found to be quite insensitive to 
magnetic ordering (long ranged or local) of the moments, and the parallel with the 
single impurity Anderson model discussed here (sections 3-5) is amply confirmed. 
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